
Querying Dynamic and Context-Sensitive Metadata in
Semantic Web

Sergiy Nikitin, Vagan Terziyan, Yaroslav Tsaruk, Andriy Zharko

Industrial Ontologies Group, Agora Center, University of Jyväskylä
 P.O. Box 35, FIN-40014 Jyväskylä, FINLAND

e-mail: seniki@cc.jyu.fi

Abstract. RDF (core Semantic Web standard) is not originally appropriate for
context representation, because of its initial focus on the ordinary Web re-
sources, such as web pages, files, databases, services, etc., which structure and
content are more or less stable. However, on the other hand, emerging industrial
applications consider e.g. machines, processes, personnel, services for condition
monitoring, remote diagnostics and maintenance, etc. to be specific classes of
Web resources and thus a subject for semantic annotation. Such resources are
naturally dynamic, not only from the point of view of changing values for some
attributes (state of resource), but also from the point of view of changing “sta-
tus-labels” (condition of the resource). Thus, context-awareness and dynamism
appear to be new requirements to the existing RDF. This paper discusses the is-
sues of representing the contexts in RDF and constructions coming with context
representation. We discover certain representation patterns and their classifica-
tion towards development of the general approach of querying dynamic and
context-sensitive metadata in Semantic Web by autonomous agents.

1 Introduction

Emerging Semantic Web technology offers a Resource Description Framework
(RDF) as a standard for semantic annotation of Web resources. It is expected that
Web content with RDF-based metadata layer and ontological basis for it will be
enough to enable interoperable and automated processing of Web data by various ap-
plications. RDF-based tools, e.g. Hewlett-Packard’s Jena [14] and Stanford’s Protégé
[15] provide a base for reasoning about metadata and about situated data (entities sit-
uated in time and space) that is superior to alternatives such as relational databases or
object-oriented databases. However, according e.g. to [10] essential representational
ability is missing from the current generation of Semantic Web tools and languages.
When that ability is added, the resulting capabilities offer a combination of novelty
and flexibility that may usher in a wave of commercial Semantic Web tool-based ap-
plications. Evidently the existing RDF tools should be extended to support contexts to
enable querying a set of RDF statements having common temporal, spatial or other
metadata attributes. In [10] it was concluded that the “clear winners” for possible so-
lution can be quads (i.e. adding a fourth field of type ‘context’ to each RDF triple)
and a context mechanism that references individuals instead of statements. Another
attempt has been made recently to add C-OWL (Context OWL), an extended lan-

guage with an enriched semantics which allows us to contextualize ontologies, name-
ly, to localize their contents (and, therefore, to make them not visible to the outside)
and to allow for explicit mappings (bridge rules). The core open issue is the tension
between how much knowledge should be shared and globalized (via ontologies) and
how much should be localized with limited and controlled forms of globalization (via
contexts) [11]. In [12] the usage of context- and content-based trust mechanisms have
been proposed and the cRDF trust architecture was presented which allows the formu-
lation of subjective and task-specific trust policies as a combination of reputation-,
context- and content-based trust mechanisms. There exist different ways how to un-
derstand and use context information for RDF data. In [13] these different ways have
been summarized and the RDF-Source related Storage System (RDF-S3) has been
proposed. RDF-S3 aimed to keep track of the source information for each stored RDF
triple. On top the RDF-S3 has an extended version of easy RQL (eRQL) that makes
use of the source information supported by RDF-S3. Therefore queries can be re-
stricted to trusted sources and results can be viewed inside their RDF graph context.
Two main arguments are stated in [13] for using context nodes instead of quads. First,
quads are not compatible with the RDF model and second, the distinction between the
given RDF information and information that is given in addition, like external context
information, is much more complicated when using quads, whereas additional context
nodes can be easily distinct from RDF triples. Therefore context nodes were used in-
stead of context parts (quads).

There is not yet clear vision, which way is better (triples or quads) for representing
contextual metadata in RDF. Another issue is for what kind of resources such descrip-
tions will be required. On one hand the ordinary Web resources, such as web pages,
files, databases, services, etc., which structure and content are more or less stable,
probably do not need a specific way of context representation. However, on the other
hand, emerging industrial applications consider e.g. machines, processes, personnel,
services for condition monitoring, remote diagnostics and maintenance, etc. represent
specific classes of Web resources and thus a subject for semantic annotation. Such re-
sources are naturally dynamic, not only from the point of view of changing values for
some attributes (state of resource) but also from the point of view of changing “status-
labels” (condition of the resource). In our former effort within SmartResource project
[16] we presented Resource State/Condition Description Framework (RscDF), as an
extension to RDF, which introduces upper-ontology for describing such characteris-
tics of resources as states and corresponding conditions, dynamics of state changes,
target conditions and historical data about previous states. These descriptions are sup-
posed to be used by external Web-services (e.g. condition monitoring, remote diag-
nostics and predictive maintenance of the resources). We presented RscDF as tem-
poral and contextual extensions of RDF and discussed a State-Symptom-Diagnosis-
Decision-Maintenance model as the basis for RscDF schema.

RSCDF is a unified representation format for resource state and condition descrip-
tion (encoding). RscDF-language formalizes context definition structure. RscDF-
Schema defines main concepts and structure of the language. The structure is highly
flexible, thus allowing definition of different complex constructions over the basic
statements. Different definitions being used for resource description must refer to or
define instances of classes from Industrial Maintenance Ontology. Detailed descrip-

tion of RscDF-language is not in a scope of this paper, so we refer to [17]. Figure 1
shows the key element of RscDF – “SR_Statement”.

Fig. 1. SR_Statement structure

The SR_Statement defines the basic structure of statements being used in RscDF.
The combinations of statements and references to statements and statement containers
may form highly structured semantic description. The important semantics are repre-
sented by SR_Property class and its subproperties. The property in the
rscdfs:predicate container defines the type and structure of rdf:object of current
SR_Statement. However, the property specification defines only domain and range.
So to know the structure of the statement, we have to attach some pattern description
to SR_Property.

The RscDF language was designed to serve the concept of a Global Understanding
Environment [1]. GUN concept utilises Semantic Web approach for resource annota-
tion and ontology-based semantic representation and describes communities of inter-
acting Smart Resources. GUN provides a framework for making resources smart, for
interaction, collaboration, coordination of these resources and resource discovery
support. Types of resources are not restricted to traditional web content, but can be
physical resources from real world, such as humans and devices (see Figure 2).

Fig. 2. GUN concept illustrated (adopted from [1])

SR_Statement

Context_SR_Container
rscdfs:trueInContext

rscdfs:predicate

SR_Property

SR_Statement

rdf:subject rdf:object

.

.

.

GUN paradigm provides every participant with common structured data represen-
tation format, allowing explicit and unambiguous knowledge sharing. In order to be-
come GUN participant certain steps of adaptation should be taken. In GUN develop-
ment our research group focuses on industrial case study that is concerned with large-
scale platforms for automated management of industrial objects. The adaptation pro-
cess to GUN environment is described in General Adaptation Framework [18]. “Gen-
eral adaptation” assumes a design of a sufficient framework for an integration of dif-
ferent (by structure and nature) resources into the GUN environment. This
environment will provide a mutual interaction between heterogeneous resources. Ad-
aptation assumes elaboration of a common mechanism for new resource integration,
and its provision with a unified way of interaction. The main idea of adaptation is
based on a concept of “adapter”, which plays role of a bridge between an internal rep-
resentation of resource and a unified environment.

Adapter is a software component, which provides a bidirectional link between a re-
source interface and an interface of the environment. GUN assumes interoperability
of Smart Resources. Smart Resource is a conjunction of Real World Resource
(RWR), Adapter and Agent. By extending RWR within Adapter and Agent we make
it GUN compatible. General Adaptation includes development of Adapter for RWR.
Adaptation to GUN is not just syntactical transformation from one representation
format to another. The key element of adaptation is mapping of concepts being used
by “Real-World-Resource” to Industrial Maintenance Ontology (IMO) elements. The
role of IMO lies in unification and structuring of data being represented in such way
that every resource description taking part in GUN must refer to it.

Semantic Web standards are not yet supporting semantic descriptions of resources
with proactive behavior. However, as the research within the SmartResource project
shows [16], to enable effective and predictive maintenance of an industrial device in
distributed and open environment, it will be necessary to have autonomous agent
based monitoring over device state and condition and also support from remote diag-
nostics Web-Services (see Figure 3).

Fig. 3. SmartResource as a Multi-Agent System

This means that the description of a device as a resource will require also the de-
scription of proactive behavior of autonomous condition monitoring applications
(agents, services) towards effective and predictive maintenance of the device. For that
we plan to develop in 2005 another extension of RDF, which is Resource
Goal/Behavior Description Framework (RGBDF) to enable explicit specification of
maintenance goals and possible actions towards faults monitoring, diagnostics and
maintenance. Based on RSCDF and RGBDF and appropriate ontological support, we
also plan to design RSCDF/RGBDF platforms for smart resources (devices, Web-
services and human experts) equipped by adapters and agents for proactivity, and then
to apply several scenarios of communication between the platforms towards learning
Web-services based on device data and expert diagnostics to enable automated remote
diagnostics of devices by Web-services.

In this paper we present our solution how to manage (according to the structure of
the paper Section 2 describes about storing and Section 3 is dedicated to querying) the
context-sensitive metadata for applications compatible with Semantic Web and GUN
concepts by utilising existing technologies and tools. Some examples with industrial
metadata are also provided.

2 Storing RDF-Based Metadata

Nowadays there are a lot of proposals related to storing RDF data in RDF databases,
each with different client-server protocols and different client APIs. For our purposes
we surveyed a number of most popular RDF-storages (Kowari1, Sesame2, Joseki3) and
selected Joseki storage as most suitable allowing access to RDF-data through HTTP.

2.1 Joseki

Joseki has been proposed and maintained by Semantic Web group at HP Labs. Joseki
is a web application for publishing RDF models on the web and realized useful access
to models through HTTP protocol. This allows getting easy access to model from an-
ywhere you want. It is built on Jena and, via its flexible configuration, allows a Model
to be made available on a specified URL and queried using a number of languages.
Results can be returned as RDF/XML, RDF/N3, or NTriples. The query languages,
result formats, and model sources can be extended to produce new alternatives tai-
lored to the user's needs.

2.2 Storing and Extracting Data in Joseki

Information stored in Joseki are presented in a format of models. The client applica-
tion has an access to a specified model and executes operation on this model. Opera-
tions that can be done upon the remote model:

 add new model or statement

1 http://www.kowari.org/
2 http://www.openrdf.org/
3 http://www.joseki.org/

 remove model or statement
 extract data from storage
New model can be appended to already existing model on the Joseki server. This

operation also allows appending new statement to the predefined model. Each model
or statement can be removed from the storage by using the remove operation.

Data extraction from Joseki storage can be implemented by using different mecha-
nisms:

 fetch the whole model
 SPO query (single triple match language)
 RDQL query
Information from the storage can be extracted partly or as a whole model. To ex-

tract the whole model the fetch mechanism is used. For extracting just specified in-
formation, SPO and RDQL queries are available. SPO (also known as "Triples") is an
experimental minimal query language. An SPO query is a single triple pattern, with
optional subject (parameter "s"), predicate (parameter "p"), and object (parameter "o",
if an URIref or parameter "v" for a string literal). Absence of the parameter implies
"any" for matching that slot of the triple pattern.

RDQL is a query language, which is similar to SQL (Structured Query Language)
and allows specifying the set of conditions, which should suite the extracted set of
statements.

The architecture of Joseki is presented in Figure 4.

RDBMS

Add module

Joseki

Remove module

Fetch module Query module Name of
model

RDQL
query

HTTP
request

Model or
Statement

HTTP
request

HTTP
request

Model or
Statement

HTTP
request

Fig. 4. Architecture of Joseki storage

It consists of the core module and modules, which execute specialized functions on
the remote model (fetching, adding, removing, querying). Interaction between the cli-
ent and the Joseki server is implemented through HTTP query. The type of the query
depends on the length of the query. It could be GET if query is not longer then 200
characters, otherwise POST method is used. Each model in Joseki server has a prede-
fined set of operations, which could be executed upon it. When server gets query to
one of the defined models, it checks the list of operations which could be executed
and if the operation is not specified it responds by a fail message. Each operation is

executed by a specified module. As an input each module requires special parameters.
For example, Addition and Remove modules need as an input model or statement,
which have to be added or removed. As a response Joseki sends empty model, if the
operation was successful.

One more optional component is RDBMS assigned for storing models in a persis-
tent storage. The models in Joseki can be saved in two ways (See Figure 5):

 to a file
 to a RDBMS.

File System RDBMS

MySQL PostgreSQL

Models

Fig. 5. Types of storing models in Joseki

The target RDBMS is specified in the configuration file joseki-db.n3.

2.3 RDQL

Resource Description Query Language (RDQL) is a query language for RDF. RDQL
is an implementation of the SquishQL RDF query language and is similar to SQL. It
borrows basic set of words for specifying the set of data, which should be returned
(e.g. SELECT, WHERE, FROM, etc). As a condition for extracting, RDQL provides,
the “WHERE” clause followed by a list of triples (subject, predicate, object). These
triples define the pattern for a search. RDQL has one more key word for defining a
space of URI identifiers. It allows avoiding long names.

In the sample query presented below (SELECT-query), as a result, two values will
be returned: Matthew and Jones. At the beginning of query we specify the values,
which should be returned: “?family” and “?given”. The first condition deter-
mines a statement, which has vcard:FN property value “Matt Jones”. Then we ex-
tract data from property vcard:N to the variable “name”. Basing on this infor-
mation, we extract values of the property vcard:Family and vcard:Given.

SELECT ?family, ?given
WHERE (?vcard vcard:FN “Matt Jones”)
 (?vcard vcard:N ?name)
 (?name vcard:Family ?family)
 (?name vcard:Given ?given)
USING vcard FOR <http://www.w3.org/2001/vcard-rdf/3.0#>

Scheme on Figure 6 shows the steps of the query execution. The names of nodes
are presented as names of variables to make picture clearer. The values of variables
“vcard” and “name” are used as an input to the next condition statements.

Fig. 6. Query description scheme

3 RscDF Data Management in GUN

The capabilities GUN provides rely on the common data representation format
(RSCDF) and the common understanding of domain (Industrial Maintenance Ontolo-
gy). As far as RSCDF is RDF-compatible, we reuse already existing RDF-databases
to store RSCDF data.

3.1 Joseki RDF storage in GUN

Joseki server plays the role of a permanent storage in GUN. It stores all the infor-
mation, which come from all adapters and provides convenient access for extracting
data from it. The storage can be centralized or embedded into the adapter. In the sce-
nario we implemented (Figure 7), it plays the role of a common shared storage.

Fig. 7. Presentation scenario

According to the needs of our task the special module for interaction with Joseki
server has been developed. This module allows following operations on model and

RDQL

WSDL XML/SOAP

Web
Service

Set of data

RscDF
document with

expert
description

WSDL
XML/SOAP

Set of data
Monitoring

Service Adapter

RscDF

XML
document

Device

RDQL

Web
Service

RscDF
Resource
Browser
(Expert Adapter)

Resource
Adapter

Joseki

Learning
Service Adapter

vcard:Given

vcard:N vcard:FN

vcard:Family

”Jones””Matthew”

”Matt Jones”?name

?vcard

statements, such as: adding, removing and clearing the whole model. To implement
model functionality the class JosekiStorage was created. Property modelURI point-
ing to model is initialized in a constructor of the class. As an input to the constructor
parameters “HostName” and “ModelName” are passed.

In addition, there are classes from packages com.hp.hpl.jena.joseki and
com.hp.hpl.jena.rdf.model. Classes from these packages simplify work with RDF da-
ta. Figure 8 shows the class diagram of the module.

Fig. 8. Class diagram showing classes needed for interaction with the Joseki server

3.2 Applying RDQL to RscDF Querying

When querying RscDF data we deal with Statement objects that has the additional
property rscdfs:trueInContext. When selecting a Statement about an object
having certain property, we have to consequently apply queries, specifying the
rdf:object, rscdfs:predicate or rdf:subject property values, so the query may look like:

SELECT ?stmts
WHERE
(?stmts,<rdf:subject>,<papmDescr:123456XZ24>),
(?stmts,<rscdfs:predicate>,<measureOnt:surfacelevel>)
USING
papmDescr FOR
<http://www.cc.jyu.fi/~olkhriye/rscdfs/resource/resourc
eInstanceDescription#>,
rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns#>,
rscdfs FOR
<http://www.cc.jyu.fi/~olkhriye/rscdfs/0.3/rscdfs#>,
measureOnt FOR
<http://www.cc.jyu.fi/~olkhriye/rscdfs/0.3/ontologies/m
easurementOntology#>

The resulting variable stmts will contain the set of Statements, whose subject and
predicate properties satisfy the condition presented in Figure 9 in a form of a graph.

Fig. 9. Visual query representation

However, when the query contains context-related parts, we meet a problem of rep-
resenting it in the RDQL language. The query becomes difficult to read, because of
additional constructions. For example, when the statements describing different object
properties at the certain moment of time, should be selected, we have to specify the
value of time-statement lying in the context container.

3.3 Querying Patterns

RscDF language provides a facility to select Statements by a certain template. The
template Statement is put to the context container of Statement, wrapping the State-
ments selected according to the template. Figure 10 shows the structure of Statement,
being created as a result of data collection according to a certain template.

Fig. 10. Data Collection Statement selecting data according to a template

The most vivid example of the template context-dependent data collection is State-
template data collection. For example, we have a certain resource, logging a track of
its states. Different Statements about resource states are marked with time. So, the
Statements will contain Statement about time in context container (Figure 11).

rscdfs:trueInContext

rscdfs:predicate

measureOnt:surfacelevel

papmDescr:123456XZ24

?stmts

rdf:subject
rdf:object

Template
SR_Statement

SR_Container of
Statements, matching the
template

Context_SR_Container
rscdfs:trueInContext

rscdfs:predicate

SR_Property

ResourceID

Wrapping
SR_Statement

rdf:subject
rdf:object

Fig. 11. Statement with time context

Figure 12 shows the data collection (subhistory) statement. The rdf:object
property contains reference to container with Statements, matching the data collection
template. The data collection template Statement is placed to the Con-
text_SR_Container of the State Statement.

Fig. 12. Collecting Statement of State template

All the names marked with (*) are not actually present in Industrial Maintenance
Ontology, but mean more generic classes or properties.

To apply the query, to data collection structures residing in RDF storage via RDQL
language we have to write a number of routine triple queries, so it is reasonable to
discover certain RDQL templates combining the operations into blocks and asking
only start input data for further query execution. In case of State template we have
discovered following routines:

Time
SR_Statement

Value

Context_SR_Container
rscdfs:trueInContext

rscdfs:predicate

Property

ResourceID

SR_Statement

rdf:subject rdf:object
WorldEnvironment

rscdfs:sysTime

ontoTempTempMark

rscdfs:value=2004-
09-28T 23:50:12.578
rscdfs:unit=
XMLSchemaDateTime

rdf:subject
rscdfs:predicate

rdf:object

Template
SR Statement

Container of SR_Statements,
matching the template

Context_SR_Container
rscdfs:trueInContext

rscdfs:predicate

contOnt:resourceState*

ResourceID

State
SR_Statement

rdf:subject

rdf:object

ResourceID

rdf:subject

measOnt:resourceMeasurement*

rscdfs:predicate

Context_SR_Container

rscdfs:trueInContext

Time
SR_Statement

 State RscDF-Statement To “attribute-value pairs” Routine:

Input Output
Pointer to State Statement Set of attribute-value pairs of one state

 Subhistory Statement to “Set of State Records”

Input Output
Pointer to Subhistory Statement Set of attribute-value pairs of correspond-

ent states

Further on we omit namespaces definition and USING clause. For the first case the
RDQL query looks like:

SELECT ?ValueStatements, ?NumUnits, ?NumValues
WHERE
(<StateStmtID>, <rdf:object>, ?StateContainer),
(?StateContainer, <rscdfs:member>, ?ValueStatements),
(?ValueStatements, <rdf:object>, ?NumValueInstances),
(?NumValueInstances, <rscdfs:value>,?NumValues),
(?NumValueInstances, <rscdfs:unit>, ?NumUnits)

The output of the query is a plain 3-column table with a set of rows. It is implied
that every record in the table belongs to State, hence here we have 3 output variables,
but in cases, when this routine is used as a subroutine, we have to return also the State
Statement identifiers in order to be able to identify then relationships of values to
states. Table 1 illustrates a possible output of the query:

Statement ID Units Value
somens:valueStatementID_1 measureUnitsOnt:temperatureCelsius 70

somens:valueStatementID_2 measureUnitsOnt:roundsPerMinute 1500

Table 1. RDQL Query output

We put Statement ID to query output, because it uniquely identifies the belonging
of values and units and allows further inference upon received results. As far as
RDQL query result is displayed in one non-normalized table, we store redundant data,
but save the semantics.

The routine logic can be wrapped as a method, whose input is the name of State-
ment and output - RDQL subroutine. Example in Figure 13 shows more complex log-
ic. It reuses previous example of State data selection, but provides a Set of States.

Below is the RDQL query:
SELECT?StateStmts,?ValueStatements,?NumUnits, ?NumVaues
WHERE
(<HistoryStmtID>, <rdf:object>, ?StatesCont),
(?StatesCont, <rscdfs:member>, ?StateStmts),
(?StateStmts, <rdf:object>, ?StateContainers),
(?StateContainers, <rscdfs:member>, ?ValueStatements),
(?ValueStatements, <rdf:object>, ?NumValueInsts),
(?NumValueInsts, <rscdfs:value>,?NumValues),
(?NumValueInsts, <rscdfs:unit>, ?NumUnits)

Fig. 13. History Statement

The five last strings of the query above are almost equivalent to the State query
template. The only difference is presence of variable ?StateStmts instead of static
given value StateStmtID. Query doesn’t contain any references to types of prop-
erties being used in statements because we know beforehand what kind of data we
deal with. In general, when the statement’s ID is not known, we should first look for
it, specifying as a search criteria Resource’s ID and property type, for example:

SELECT ?stmts
WHERE
(?stmts,<rdf:subject>,<resourceID>),
(?stmts,<rscdfs:predicate>,<rscdfs:sr_StateHistory>)

Basically, the SR_Property being pointed by rscdfs:predicate, specifies the
data template. So it makes sense to develop the ontology of data templates and associ-
ate it with SR_Properties.

Conclusions

In this paper we tried to analyze the problems of storing and managing context-
enabled data via RDF storages. Finally, Joseki RDF storage and querying engine has
been chosen as the most appropriate for integration to the prototype platform for ad-
aptation of industrial resources to Semantic Web – pilot system, result of the Adapta-
tion Stage of the SmartResource project. The approach based on the RDQL-patterns
has been applied in the logic of the part of General Semantic Adapter, responsible for
querying RscDF storages – dynamic and context-sensitive histories of industrial re-
sources (experts, web services and devices). The flexibility of the RDQL-patterns has

State
SR Statement 1

State
SR Statement n

rscdfs:sr_State

ResourceID

Template
SR Statement

Container of SR_Statements,
matching the template

rscdfs:sr_StateHistory

ResourceID

History

Context_SR_Container

allowed to design a unified semantic adapter – a mediator between software agents
(which implement proactive goal-driven behavior of originally passive industrial re-
sources) and RDF-based storage of the history data of the corresponding industrial re-
sources.

Further, it is planned to apply the developed method based on the RDQL-patterns
in the design of querying mechanism for goal/behavior rule storages, which will uti-
lize RGBDF – Resource Goal/Behavior Description Framework. The latter will be de-
signed during the Proactivity Stage of the SmartResource activities as a part of the
Pro-GAF – General Proactivity Framework.

Acknowledgements

This research has been performed as part of the SmartResource (“Proactive Self-
Maintained Resources in Semantic Web”) project in Agora Center (University of
Jyväskylä, Finland) and funded by TEKES and industrial consortium of following
companies: Metso Automation, TeliaSonera, TietoEnator and Science Park of
Jyväskylä.

References

1. Terziyan V., Semantic Web Services for Smart Devices in a “Global Understand-
ing Environment”, In: R. Meersman and Z. Tari (eds.), On the Move to Meaning-
ful Internet Systems 2003: OTM 2003 Workshops, Lecture Notes in Computer
Science, Vol. 2889, Springer-Verlag, 2003, pp.279-291.

2. Online Jena API tutorial by B. McBride, “An Introduction to RDF and the Jena
RDF API”, August 2003, http://jena.sourceforge.net/tutorial/RDF_API/.

3. Online Jena tutorial by A. Seaborne, Hewlett Packard, “Jena Tutorial. A Pro-
grammer's Introduction to RDQL”, April 2002,

 http://www.hpl.hp.com/semweb/doc/tutorial/RDQL/.
4. Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds, Efficient

RDF Storage and Retrieval in Jena2, In: I. F. Cruz, V. Kashyap, S. Decker, R.
Eckstein (Eds.): Proceedings of SWDB'03, The first International Workshop on
Semantic Web and Databases, Co-located with VLDB 2003, Humboldt-
Universität, Berlin, Germany, September 7-8, 2003: 131-150.

5. A. Barnell, RDF Objects, Technical Report, Semantic Web Applications Group,
Hewlett Packard Laboratories Bristol, Avon, England, November 2002.

6. Webpage of Jena on the official website of B. McBride, Hewlett Packard, “Jena,
An RDF API in Java”, http://www.uk.hpl.hp.com/people/bwm/rdf/jena.

7. R. Lee, Scalability Report on Triple Store Applications, Technical Report,
SIMILE project, 2004.

8. D. Beckett, Semantic Web scalability and storage: survey of free software/open
source RDF storage systems, Deliverable 10.1 report, SWAD-Europe project
(IST-2001-34732), 2002.

9. B. McBride, Jena: Implementing the RDF Model and Syntax Specification, HP
Labs in proceedings of the Second International Workshop on the Semantic Web,
WWW10, Hong Kong, 1st May 2001.

10. R. MacGregor, In-Young Ko, Representing Contextualized Data using Semantic
Web Tools, In Proceedings of the 1st International Workshop on Practical and
Scalable Semantic Systems, ISWC 2003, October 2003, Sanibal Island, Florida,
USA.

11. P. Bouquet, F. Giunchiglia, F. Harmelen, L. Serafini, and H. Stuckenschmidt,
Contextualizing Ontologies, Journal of Web Semantics, vol. 26, 2004: 1-19 pp.

12. C. Bizer and R. Oldakowski. Using Context- and Content-Based Trust Policies
on the Semantic Web. In 13th World Wide Web Conference, WWW2004 (Post-
er), 2004.

13. Official website of RDF-S3 - RDF Source related Storage System,
http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/RDFS3/.

14. Official website of JENA – a Semantic Web Framework for Java,
http://jena.sourceforge.net/.

15. Official website of the Protégé ontology management tool,
http://protege.stanford.edu/.

16. Webpage of the SmartResource project,
http://www.cs.jyu.fi/ai/OntoGroup/SmartResource_details.htm.

17. Kaykova O., Khriyenko O., Naumenko A., Terziyan V., Zharko A., “RSCDF:
Resource State/Condition Description Framework”, Deliverable 1.1 report, Sep-
tember 2004, SmartResource project, (http://www.cs.jyu.fi/ai/IJWGS-
2004_v2.doc).

18. Kaykova O., Khriyenko O., Kovtun D., Naumenko A., Terziyan V., Zharko A.,
“GAF: General Adaptation Framework”, Deliverable 1.2 report, October 2004,
SmartResource project (http://www.cs.jyu.fi/ai/SJIS-2005.doc).

