

(λx → succ $ 1 – 1) ()

Quick Reference for the Channel 9 Lecture Series

on Functional Programming by Dr. Erik Meijer.

This reference is intended to be used as an initial reference for the lecture series.

It only covers the absolute basics – the essence of the first two lectures.

To use multi-line function definitions, write them in a text file and load them into

the interactive promt.

(λx → succ $ 2 – 1) ()

1 Read, Eval, Print – Loop (REPL)

1.1 REPL # 1 GHCi

This is the Glasgow Haskell Compiler Interactive (GHCi) promt. Write an expression and press enter. Then

the value of the expression will be written next.

http://img230.imageshack.us/img230/3469/ghci.png

(λx → succ $ 3 – 1) ()

1.1 REPL #2 WinGHCi

This essentially the same as the GHCi REPL, but it is faster and lighter on the eyes.

http://img38.imageshack.us/img38/5476/wghci.png

(λx → succ $ 4 – 1) ()

2 Concepts

2.1 Application, Abstraction & Composition

The REPL below shows three crucial concepts of functional programming: (i) function application, (ii)

function abstraction and (iii) function composition

1 + 1 is infix application of the + function to 1 and 1 (used for “operator functions” such as +)

+ 1 1 is the prefix application of the + function to 1 and 1

let double x = x + x is the abstraction of x + x over double

double . double is the composition of double and double where “.” is the infix composition operator

1 + 1 demonstrates application

let double x = x + x demonstrates abstraction and application

let quadruple = double . double demonstrations composition, abstraction and application

http://img65.imageshack.us/img65/8886/wghcix2.png

(λx → succ $ 5 – 1) ()

This function

let quadruple = double . double

may be rewritten as

let quadruple = \x → double (double x)

where

\x → double (double x)

corresponds to the C# lambda expression

x => double(double(x))

